Using recurrent neural networks to detect supernumerary chromosomes in fungal strains causing blast diseases

Author:

Gyawali Nikesh1,Hao Yangfan2,Lin Guifang2ORCID,Huang Jun2ORCID,Bika Ravi2,Daza Lidia Calderon2,Zheng Huakun2ORCID,Cruppe Giovana2,Caragea Doina1ORCID,Cook David2ORCID,Valent Barbara2ORCID,Liu Sanzhen2ORCID

Affiliation:

1. Department of Computer Science, Kansas State University , Manhattan , KS  66506 , USA

2. Department of Plant Pathology, Kansas State University , Manhattan , KS  66506 , USA

Abstract

Abstract The genomes of the fungus Magnaporthe oryzae that causes blast diseases on diverse grass species, including major crops, have indispensable core-chromosomes and may contain supernumerary chromosomes, also known as mini-chromosomes. These mini-chromosomes are speculated to provide effector gene mobility, and may transfer between strains. To understand the biology of mini-chromosomes, it is valuable to be able to detect whether a M. oryzae strain possesses a mini-chromosome. Here, we applied recurrent neural network models for classifying DNA sequences as arising from core- or mini-chromosomes. The models were trained with sequences from available core- and mini-chromosome assemblies, and then used to predict the presence of mini-chromosomes in a global collection of M. oryzae isolates using short-read DNA sequences. The model predicted that mini-chromosomes were prevalent in M. oryzae isolates. Interestingly, at least one mini-chromosome was present in all recent wheat isolates, but no mini-chromosomes were found in early isolates collected before 1991, indicating a preferential selection for strains carrying mini-chromosomes in recent years. The model was also used to identify assembled contigs derived from mini-chromosomes. In summary, our study has developed a reliable method for categorizing DNA sequences and showcases an application of recurrent neural networks in predictive genomics.

Funder

National Science Foundation

Division of Integrative Organismal Systems

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3