The Ramp Atlas: facilitating tissue and cell-specific ramp sequence analyses through an intuitive web interface

Author:

Miller Justin B123,Meurs Taylor E4,Hodgman Matthew W1,Song Benjamin4,Miller Kyle N5,Ebbert Mark T W126,Kauwe John S K4ORCID,Ridge Perry G4ORCID

Affiliation:

1. Sanders-Brown Center on Aging, University of Kentucky , Lexington , KY 40504, USA

2. Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky , Lexington , KY 40506, USA

3. Department of Pathology and Laboratory Medicine, University of Kentucky , Lexington , KY 40506, USA

4. Department of Biology, Brigham Young University , Provo , UT 84602, USA

5. Department of Computer Science, Utah Valley University , Orem , UT 84058, USA

6. Department of Neuroscience, University of Kentucky , Lexington , KY 40506, USA

Abstract

AbstractRamp sequences occur when the average translational efficiency of codons near the 5′ end of highly expressed genes is significantly lower than the rest of the gene sequence, which counterintuitively increases translational efficiency by decreasing downstream ribosomal collisions. Here, we show that the relative codon adaptiveness within different tissues changes the existence of a ramp sequence without altering the underlying genetic code. We present the first comprehensive analysis of tissue and cell type-specific ramp sequences and report 3108 genes with ramp sequences that change between tissues and cell types, which corresponds with increased gene expression within those tissues and cells. The Ramp Atlas (https://ramps.byu.edu/) allows researchers to query precomputed ramp sequences in 18 388 genes across 62 tissues and 66 cell types and calculate tissue-specific ramp sequences from user-uploaded FASTA files through an intuitive web interface. We used The Ramp Atlas to identify seven SARS-CoV-2 genes and seven human SARS-CoV-2 entry factor genes with tissue-specific ramp sequences that may help explain viral proliferation within those tissues. We anticipate that The Ramp Atlas will facilitate personalized and creative tissue-specific ramp sequence analyses for both human and viral genes that will increase our ability to utilize this often-overlooked regulatory region.

Funder

BrightFocus Foundation

National Institutes of Health

Alzheimer's Association

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3