A comprehensive analysis of pneumococcal two-component system regulatory networks

Author:

Pettersen Jens Sivkær1,Nielsen Flemming Damgaard12,Andreassen Patrick Rosendahl3,Møller-Jensen Jakob1ORCID,Jørgensen Mikkel Girke1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Southern Denmark , Odense , Denmark

2. Department of Clinical Microbiology, Odense University Hospital , Odense , Denmark

3. Department of Microbiology , ETH Zürich, Zürich , Switzerland

Abstract

Abstract Two-component systems are key signal-transduction systems that enable bacteria to respond to a wide variety of environmental stimuli. The human pathogen, Streptococcus pneumoniae (pneumococcus) encodes 13 two-component systems and a single orphan response regulator, most of which are significant for pneumococcal pathogenicity. Mapping the regulatory networks governed by these systems is key to understand pneumococcal host adaptation. Here we employ a novel bioinformatic approach to predict the regulons of each two-component system based on publicly available whole-genome sequencing data. By employing pangenome-wide association studies (panGWAS) to predict genotype-genotype associations for each two-component system, we predicted regulon genes of 11 of the pneumococcal two-component systems. Through validation via next-generation RNA-sequencing on response regulator overexpression mutants, several top candidate genes predicted by the panGWAS analysis were confirmed as regulon genes. The present study presents novel details on multiple pneumococcal two-component systems, including an expansion of regulons, identification of candidate response regulator binding motifs, and identification of candidate response regulator-regulated small non-coding RNAs. We also demonstrate a use for panGWAS as a complementary tool in target gene identification via identification of genotype-to-genotype links. Expanding our knowledge on two-component systems in pathogens is crucial to understanding how these bacteria sense and respond to their host environment, which could prove useful in future drug development.

Funder

Danish Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3