PIP-SNP: a pipeline for processing SNP data featured as linkage disequilibrium bin mapping, genotype imputing and marker synthesizing

Author:

Zhang Wenchao1,Kang Yun1,Dai Xinbin1,Xu Shizhong2,Zhao Patrick X1ORCID

Affiliation:

1. Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA

2. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA

Abstract

Abstract Genome-wide association study data analyses often face two significant challenges: (i) high dimensionality of single-nucleotide polymorphism (SNP) genotypes and (ii) imputation of missing values. SNPs are not independent due to physical linkage and natural selection. The correlation of nearby SNPs is known as linkage disequilibrium (LD), which can be used for LD conceptual SNP bin mapping, missing genotype inferencing and SNP dimension reduction. We used a stochastic process to describe the SNP signals and proposed two types of autocorrelations to measure nearby SNPs’ information redundancy. Based on the calculated autocorrelation coefficients, we constructed LD bins. We adopted a k-nearest neighbors algorithm (kNN) to impute the missing genotypes. We proposed several novel methods to find the optimal synthetic marker to represent the SNP bin. We also proposed methods to evaluate the information loss or information conservation between using the original genome-wide markers and using dimension-reduced synthetic markers. Our performance assessments on the real-life SNP data from a rice recombinant inbred line (RIL) population and a rice HapMap project show that the new methods produce satisfactory results. We implemented these functional modules in C/C++ and streamlined them into a web-based pipeline named PIP-SNP (https://bioinfo.noble.org/PIP_SNP/) for processing SNP data.

Funder

Noble Research Institute

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Reference37 articles.

1. Genomewide association studies and assessment of the risk of disease;Manolio;N. Engl. J. Med.,2010

2. Progress and promise of genome-wide association studies for human complex trait genetics;Stranger;Genetics,2011

3. Novel and efficient tag SNPs selection algorithms;Chen;Biomed. Mater. Eng.,2014

4. Linkage mapping in experimental crosses: the robustness of single-gene models;Wright;Genetics,1997

5. Sequencing technologies — the next generation;Metzker;Nat. Rev. Genet.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3