Family-specific analysis of variant pathogenicity prediction tools

Author:

Zaucha Jan1,Heinzinger Michael2,Tarnovskaya Svetlana3,Rost Burkhard2,Frishman Dmitrij1ORCID

Affiliation:

1. Department of Bioinformatics, Technical University of Munich, 85354 Freising, Germany

2. Department of Informatics, Bioinformatics & Computational Biology—i12, Technical University of Munich, 85748 Garching, Germany

3. Almazov National Medical Research Centre, St. Petersburg 197341, Russia

Abstract

Abstract Using the presently available datasets of annotated missense variants, we ran a protein family-specific benchmarking of tools for predicting the pathogenicity of single amino acid variants. We find that despite the high overall accuracy of all tested methods, each tool has its Achilles heel, i.e. protein families in which its predictions prove unreliable (expected accuracy does not exceed 51% in any method). As a proof of principle, we show that choosing the optimal tool and pathogenicity threshold at a protein family-individual level allows obtaining reliable predictions in all Pfam domains (accuracy no less than 68%). A functional analysis of the sets of protein domains annotated exclusively by neutral or pathogenic mutations indicates that specific protein functions can be associated with a high or low sensitivity to mutations, respectively. The highly sensitive sets of protein domains are involved in the regulation of transcription and DNA sequence-specific transcription factor binding, while the domains that do not result in disease when mutated are responsible for mediating immune and stress responses. These results suggest that future predictors of pathogenicity and especially variant prioritization tools may benefit from considering functional annotation.

Funder

Deutsche Forschungsgemeinschaft

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3