Internal oligo(dT) priming introduces systematic bias in bulk and single-cell RNA sequencing count data

Author:

Svoboda Marek1ORCID,Frost H Robert2ORCID,Bosco Giovanni3ORCID

Affiliation:

1. Quantitative Biomedical Sciences Program, Geisel School of Medicine , Dartmouth College, Hanover, NH 03755, USA

2. Department of Biomedical Data Science, Geisel School of Medicine , Dartmouth College, Hanover, NH 03755, USA

3. Molecular and Systems Biology Program, Geisel School of Medicine , Dartmouth College, Hanover, NH 03755, USA

Abstract

Abstract Significant advances in RNA sequencing have been recently made possible by using oligo(dT) primers for simultaneous mRNA enrichment and reverse transcription priming. The associated increase in efficiency has enabled more economical bulk RNA sequencing methods and the advent of high-throughput single-cell RNA sequencing, already one of the most widely adopted methods in transcriptomics. However, the effects of off-target oligo(dT) priming on gene expression quantification have not been appreciated. In the present study, we describe the extent, the possible causes, and the consequences of internal oligo(dT) priming across multiple public datasets obtained from various bulk and single-cell RNA sequencing platforms. To explore and address this issue, we developed a computational algorithm for RNA counting methods, which identifies the sequencing read alignments that likely resulted from internal oligo(dT) priming and removes them from the data. Directly comparing filtered datasets to those obtained by an alternative method reveals significant improvements in gene expression measurement. Finally, we infer a list of human genes whose expression quantification is most likely to be affected by internal oligo(dT) priming and predict that when measured using these methods, the expression of most genes may be inflated by at least 10% whereby some genes are affected more than others.

Funder

Bakala Foundation

Rosaline Borison Memorial Fund

Burroughs Wellcome Fund

National Institutes of Health

Geisel School of Medicine at Dartmouth

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3