Known sequence features explain half of all human gene ends

Author:

Shkurin Aleksei12,Pour Sara E12,Hughes Timothy R12

Affiliation:

1. Department of Molecular Genetics, University of Toronto , Toronto , ON M5S 1A8, Canada

2. Terrence Donnelly Centre for Cellular & Biomolecular Research , Toronto , ON M5S 3E1, Canada

Abstract

Abstract Cleavage and polyadenylation (CPA) sites define eukaryotic gene ends. CPA sites are associated with five key sequence recognition elements: the upstream UGUA, the polyadenylation signal (PAS), and U-rich sequences; the CA/UA dinucleotide where cleavage occurs; and GU-rich downstream elements (DSEs). Currently, it is not clear whether these sequences are sufficient to delineate CPA sites. Additionally, numerous other sequences and factors have been described, often in the context of promoting alternative CPA sites and preventing cryptic CPA site usage. Here, we dissect the contributions of individual sequence features to CPA using standard discriminative models. We show that models comprised only of the five primary CPA sequence features give highest probability scores to constitutive CPA sites at the ends of coding genes, relative to the entire pre-mRNA sequence, for 59% of all human genes. U1-hybridizing sequences provide a small boost in performance. The addition of all known RBP RNA binding motifs to the model increases this figure to only 61%, suggesting that additional factors beyond the core CPA machinery have a minimal role in delineating real from cryptic sites. To our knowledge, this high effectiveness of established features to predict human gene ends has not previously been documented.

Funder

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3