Affiliation:
1. Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, VIC 3052, Australia
2. Department of Medical Biology, The University of Melbourne , Melbourne, VIC 3010, Australia
Abstract
Abstract
In transcriptomic analyses, it is helpful to keep track of the strand of the RNA molecules. However, the Oxford Nanopore long-read cDNA sequencing protocols generate reads that correspond to either the first or second-strand cDNA, therefore the strandedness of the initial transcript has to be inferred bioinformatically. Reverse transcription and PCR can also introduce artefacts which should be flagged in data pre-processing. Here we introduce Restrander, a lightning-fast and highly accurate tool for restranding and removing artefacts in long-read cDNA sequencing data. Thanks to its C++ implementation, Restrander was faster than Oxford Nanopore Technologies’ existing tool Pychopper, and correctly restranded more reads due to its strategy of searching for polyA/T tails in addition to primer sequences from the reverse transcription and template-switch steps. We found that restranding improved the process of visualising and exploring data, and increased the number of novel isoforms discovered by bambu, particularly in regions where sense and anti-sense transcripts co-occur. The artefact detection implemented in Restrander quantifies reads lacking the correct 5′ and 3′ ends, a useful feature in quality control for library preparation. Restrander is pre-configured for all major cDNA protocols, and can be customised with user-defined primers. Restrander is available at https://github.com/mritchielab/restrander.
Funder
National Health and Medical Research Council
Silicon Valley Community Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献