GCPBayes pipeline: a tool for exploring pleiotropy at the gene level

Author:

Asgari Yazdan1ORCID,Sugier Pierre-Emmanuel12,Baghfalaki Taban3,Lucotte Elise1,Karimi Mojgan1,Sedki Mohammed4,Ngo Amélie1,Liquet Benoit25,Truong Thérèse1

Affiliation:

1. Paris-Saclay University, UVSQ, Gustave Roussy , Inserm, CESP, Team Exposome and Heredity, 94807 Villejuif, France

2. Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA , 64000 Pau, France

3. Inserm U1219, Univ. Bordeaux , ISPED, 33076 Bordeaux, France

4. Paris-Saclay University, UVSQ, Gustave Roussy , Inserm, CESP, Team Psychiatrie du développement et trajectoires, 94807 Villejuif, France

5. School of Mathematical and Physical Sciences, Macquarie University , Sydney , NSW 2109, Australia

Abstract

Abstract Cross-phenotype association using gene-set analysis can help to detect pleiotropic genes and inform about common mechanisms between diseases. Although there are an increasing number of statistical methods for exploring pleiotropy, there is a lack of proper pipelines to apply gene-set analysis in this context and using genome-scale data in a reasonable running time. We designed a user-friendly pipeline to perform cross-phenotype gene-set analysis between two traits using GCPBayes, a method developed by our team. All analyses could be performed automatically by calling for different scripts in a simple way (using a Shiny app, Bash or R script). A Shiny application was also developed to create different plots to visualize outputs from GCPBayes. Finally, a comprehensive and step-by-step tutorial on how to use the pipeline is provided in our group’s GitHub page. We illustrated the application on publicly available GWAS (genome-wide association studies) summary statistics data to identify breast cancer and ovarian cancer susceptibility genes. We have shown that the GCPBayes pipeline could extract pleiotropic genes previously mentioned in the literature, while it also provided new pleiotropic genes and regions that are worthwhile for further investigation. We have also provided some recommendations about parameter selection for decreasing computational time of GCPBayes on genome-scale data.

Funder

Ligue Contre le Cancer

Inserm Cross-Cutting Project GOLD

Inserm Itmo Cancer

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3