ChiTaH: a fast and accurate tool for identifying known human chimeric sequences from high-throughput sequencing data

Author:

Detroja Rajesh1ORCID,Gorohovski Alessandro1ORCID,Giwa Olawumi1,Baum Gideon1,Frenkel-Morgenstern Milana1ORCID

Affiliation:

1. Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel

Abstract

Abstract Fusion genes or chimeras typically comprise sequences from two different genes. The chimeric RNAs of such joined sequences often serve as cancer drivers. Identifying such driver fusions in a given cancer or complex disease is important for diagnosis and treatment. The advent of next-generation sequencing technologies, such as DNA-Seq or RNA-Seq, together with the development of suitable computational tools, has made the global identification of chimeras in tumors possible. However, the testing of over 20 computational methods showed these to be limited in terms of chimera prediction sensitivity, specificity, and accurate quantification of junction reads. These shortcomings motivated us to develop the first ‘reference-based’ approach termed ChiTaH (Chimeric Transcripts from High–throughput sequencing data). ChiTaH uses 43,466 non–redundant known human chimeras as a reference database to map sequencing reads and to accurately identify chimeric reads. We benchmarked ChiTaH and four other methods to identify human chimeras, leveraging both simulated and real sequencing datasets. ChiTaH was found to be the most accurate and fastest method for identifying known human chimeras from simulated and sequencing datasets. Moreover, especially ChiTaH uncovered heterogeneity of the BCR-ABL1 chimera in both bulk and single-cells of the K-562 cell line, which was confirmed experimentally.

Funder

Israel Innovation Authority

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3