Poly-Enrich: count-based methods for gene set enrichment testing with genomic regions

Author:

Lee Christopher T1ORCID,Cavalcante Raymond G2,Lee Chee2,Qin Tingting2,Patil Snehal2,Wang Shuze2,Tsai Zing T Y2,Boyle Alan P2ORCID,Sartor Maureen A12ORCID

Affiliation:

1. Biostatistics Department, University of Michigan, Ann Arbor, MI 48109, USA

2. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Abstract Gene set enrichment (GSE) testing enhances the biological interpretation of ChIP-seq data and other large sets of genomic regions. Our group has previously introduced two GSE methods for genomic regions: ChIP-Enrich for narrow regions and Broad-Enrich for broad regions. Here, we introduce Poly-Enrich, which has wider applicability, additional capabilities and models the number of peaks assigned to a gene using a generalized additive model with a negative binomial family to determine gene set enrichment, while adjusting for gene locus length. As opposed to ChIP-Enrich, Poly-Enrich works well even when nearly all genes have a peak, illustrated by using Poly-Enrich to characterize pathways and types of genic regions enriched with different families of repetitive elements. By comparing Poly-Enrich and ChIP-Enrich results with ENCODE ChIP-seq data, we found that the optimal test depends more on the pathway being regulated than on properties of the transcription factors. Using known transcription factor functions, we discovered clusters of related biological processes consistently better modeled with Poly-Enrich. This suggests that the regulation of certain processes may be modified by multiple binding events, better modeled by a count-based method. Our new hybrid method automatically uses the optimal method for each gene set, with correct FDR-adjustment.

Funder

National Institutes of Health

National Institute of Environmental Health Sciences

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3