Sequence variation, common tissue expression patterns and learning models: a genome-wide survey of vertebrate ribosomal proteins

Author:

Kyritsis Konstantinos A12ORCID,Ouzounis Christos A23ORCID,Angelis Lefteris3,Vizirianakis Ioannis S145

Affiliation:

1. Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece

2. Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thessalonica, Greece

3. Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece

4. FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK—Aristotle University of Thessaloniki, Balkan Center, GR-57001 Thessalonica, Greece

5. Department of Life and Health Sciences, University of Nicosia, CY-1700 Nicosia, Cyprus

Abstract

Abstract Ribosomal genes produce the constituents of the ribosome, one of the most conserved subcellular structures of all cells, from bacteria to eukaryotes, including animals. There are notions that some protein-coding ribosomal genes vary in their roles across species, particularly vertebrates, through the involvement of some in a number of genetic diseases. Based on extensive sequence comparisons and systematic curation, we establish a reference set for ribosomal proteins (RPs) in eleven vertebrate species and quantify their sequence conservation levels. Moreover, we correlate their coordinated gene expression patterns within up to 33 tissues and assess the exceptional role of paralogs in tissue specificity. Importantly, our analysis supported by the development and use of machine learning models strongly proposes that the variation in the observed tissue-specific gene expression of RPs is rather species-related and not due to tissue-based evolutionary processes. The data obtained suggest that RPs exhibit a complex relationship between their structure and function that broadly maintains a consistent expression landscape across tissues, while most of the variation arises from species idiosyncrasies. The latter may be due to evolutionary change and adaptation, rather than functional constraints at the tissue level throughout the vertebrate lineage.

Funder

General Secretariat for Research and Technology

Hellenic Foundation for Research and Innovation

Elixir-GR

Action ‘Reinforcement of the Research & Innovation Infrastructure’

Operational Programme ‘Competitiveness, Entrepreneurship & Innovation’

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3