Affiliation:
1. School of Mathematics and Physics, China University of Geosciences , Wuhan 430074, China
2. Department of Statistics, University of California, Riverside , Riverside, CA 92507, USA
Abstract
Abstract
Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses.
Funder
National Natural Science Foundation of China
National Institute of General Medical Sciences
Publisher
Oxford University Press (OUP)