Unraveling heteroplasmy patterns with NOVOPlasty

Author:

Dierckxsens Nicolas1,Mardulyn Patrick12,Smits Guillaume134

Affiliation:

1. Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles and Vrije Universiteit Brussel, Triomflaan CP 263, 1050 Brussels, Belgium

2. Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, Av. F. D. Roosevelt 50, B-1050 Brussels, Belgium

3. Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, 1020 Brussels, Belgium

4. Center for Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium

Abstract

Abstract Heteroplasmy, the existence of multiple mitochondrial haplotypes within an individual, has been studied across different scientific fields. Mitochondrial genome polymorphisms have been linked to multiple severe disorders and are of interest to evolutionary studies and forensic science. Before the development of massive parallel sequencing (MPS), most studies of mitochondrial genome variation were limited to short fragments and to heteroplasmic variants associated with a relatively high frequency (>10%). By utilizing ultra-deep sequencing, it has now become possible to uncover previously undiscovered patterns of intra-individual polymorphisms. Despite these technological advances, it is still challenging to determine the origin of the observed intra-individual polymorphisms. We therefore developed a new method that not only detects intra-individual polymorphisms within mitochondrial and chloroplast genomes more accurately, but also looks for linkage among polymorphic sites by assembling the sequence around each detected polymorphic site. Our benchmark study shows that this method is capable of detecting heteroplasmy more accurately than any method previously available and is the first tool that is able to completely or partially reconstruct the sequence for each mitochondrial haplotype (allele). The method is implemented in our open source software NOVOPlasty that can be downloaded at https://github.com/ndierckx/NOVOPlasty.

Funder

Belgian Kids Fund

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3