GraphPart: homology partitioning for biological sequence analysis

Author:

Teufel Felix12ORCID,Gíslason Magnús Halldór3,Almagro Armenteros José Juan45,Johansen Alexander Rosenberg6,Winther Ole137,Nielsen Henrik8ORCID

Affiliation:

1. Department of Biology, University of Copenhagen , 2200 Copenhagen , Denmark

2. Digital Science & Innovation, Novo Nordisk A/S , 2760 Måløv , Denmark

3. Department of Genomic Medicine, Copenhagen University Hospital/Rigshospitalet , 2100 Copenhagen , Denmark

4. Department of Genetics, Stanford University School of Medicine , Stanford , CA  94305 , USA

5. Department of Biomedical Data Science, Stanford University , Stanford , CA  94305 , USA

6. Department of Computer Science, Stanford University School of Engineering , Stanford , CA  94305 , USA

7. Department of Applied Mathematics and Computer Science, Technical University of Denmark , 2800 Kgs. Lyngby , Denmark

8. Department of Health Technology, Technical University of Denmark , 2800 Kgs. Lyngby , Denmark

Abstract

Abstract When splitting biological sequence data for the development and testing of predictive models, it is necessary to avoid too-closely related pairs of sequences ending up in different partitions. If this is ignored, performance of prediction methods will tend to be overestimated. Several algorithms have been proposed for homology reduction, where sequences are removed until no too-closely related pairs remain. We present GraphPart, an algorithm for homology partitioning that divides the data such that closely related sequences always end up in the same partition, while keeping as many sequences as possible in the dataset. Evaluation of GraphPart on Protein, DNA and RNA datasets shows that it is capable of retaining a larger number of sequences per dataset, while providing homology separation on a par with reduction approaches.

Funder

Novo Nordisk Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computer Science Applications,Genetics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3