Decoding functional proteome information in model organisms using protein language models

Author:

Barrios-Núñez Israel1,Martínez-Redondo Gemma I2,Medina-Burgos Patricia1,Cases Ildefonso3,Fernández Rosa2,Rojas Ana M1ORCID

Affiliation:

1. Computational Biology and Bioinformatics Group, Andalusian Center for Developmental Biology (CABD-CSIC) , 41013  Sevilla , Spain

2. Metazoa Phylogenomics Lab, Institute of Evolutionary Biology (CSIC-UPF) , 08003  Barcelona , Spain

3. Bioinformatics Unit, Andalusian Center for Developmental Biology (CABD-CSIC) , 41013  Sevilla , Spain

Abstract

Abstract Protein language models have been tested and proved to be reliable when used on curated datasets but have not yet been applied to full proteomes. Accordingly, we tested how two different machine learning-based methods performed when decoding functional information from the proteomes of selected model organisms. We found that protein language models are more precise and informative than deep learning methods for all the species tested and across the three gene ontologies studied, and that they better recover functional information from transcriptomic experiments. The results obtained indicate that these language models are likely to be suitable for large-scale annotation and downstream analyses, and we recommend a guide for their use.

Funder

Ministerio de Ciencia e Innovación

LifeHUB/CSIC Research Network

European Research Council

Human Frontier Science Program

Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3