Heterogeneous catalysis for green chemistry based on nanocrystals

Author:

Liu Yuxi1,Zhao Guofeng1,Wang Dingsheng1,Li Yadong1

Affiliation:

1. Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Abstract Modern society has an ever-increasing demand for environmentally friendly catalytic processes. Catalysis research is working towards a solution through the development of effective heterogeneous catalysts for environment-related applications. Nanotechnologies have provided effective strategies for the preparation of nanocrystals (NCs) with well-defined sizes, shapes and compositions. Precise control of these NCs provides an important foundation for the studies of structure-performance relationships in catalysis, which is critical to the design of NCs with optimized catalytic performances for practical applications. We focus on recent advances in the development of bottom-up strategies to control NCs structures for some key catalytic applications, including CO oxidation, selective oxidation of alcohols, semihydrogenation of alkynes, and selective hydrogenation of unsaturated aldehydes and nitrobenzene. These key applications have been a popular research focus because of their significance in green chemistry. Herein we also discuss the scientific understandings of the active species and active structures of these systems to gain an insight for rational design of efficient catalytic systems for these catalytic reactions.

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3