Dynamic Patterns of Symptoms and Functioning in Predicting Deliberate Self-harm in Patients with First-Episode Schizophrenia-Spectrum Disorders Over 3 Years

Author:

Wong Ting Yat12ORCID,Chan Sherry Kit Wa13ORCID,Cheung Charlton1,Lai Ming Hui Christy1,Suen Yi Nam1ORCID,Chang Wing Chung13ORCID,Lee Edwin Ho Ming1,Chen Eric Yu Hai13

Affiliation:

1. Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong SAR

2. Department of Psychiatry, Perelman School of Medicine, Brain Behavior Laboratory, University of Pennsylvania , Philadelphia, PA 19104 , USA

3. The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong , Hong Kong SAR

Abstract

Abstract Objectives Patients with schizophrenia have a significant risk of self-harm. We aimed to explore the dynamic relationship between symptomatology, functioning and deliberate self-harm (DSH) and evaluate the feasibility of developing a self-harm risk prediction tool for patients with first-episode schizophrenia (FES). Methods Patients with FES (n = 1234) were followed up for 36 months. Symptomatology, functioning, treatment adherence and self-harm information were obtained monthly over the follow-up period. A time-varying vector autoregressive (VAR) model was used to study the contribution of clinical variables to self-harm over the 36th month. Random forest models for self-harm were established to classify the individuals with self-harm and predict future self-harm events. Results Over a 36-month period, 187 patients with FES had one or more self-harm events. The depressive symptoms contributed the most to self-harm prediction during the first year, while the importance of positive psychotic symptoms increased from the second year onwards. The random forest model with all static information and symptom instability achieved a good area under the receiver operating characteristic curve (AUROC = 0.77 ± 0.023) for identifying patients with DSH. With a sliding window analysis, the averaged AUROC of predicting a self-event was 0.65 ± 0.102 (ranging from 0.54 to 0.78) with the best model being 6-month predicted future 6-month self-harm for month 11–23 (AUROC = 0.7). Conclusions Results highlight the importance of the dynamic relationship of depressive and positive psychotic symptoms with self-harm and the possibility of self-harm prediction in FES with longitudinal clinical data.

Funder

Health and Health Service Research Grant

Food and Health Bureau of Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3