Reduced Insulin-Like Growth Factor Family Member Expression Predicts Neurogenesis Marker Expression in the Subependymal Zone in Schizophrenia and Bipolar Disorder

Author:

Weissleder Christin1ORCID,Webster Maree J2,Barry Guy3,Shannon Weickert Cynthia145

Affiliation:

1. Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia

2. Laboratory of Brain Research, Stanley Medical Research Institute, Kensington, MD

3. QIMR Berghofer Medical Research Institute, Herston, QLD, Australia

4. School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia

5. Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY

Abstract

Abstract The generation of inhibitory interneurons from neural stem cells in the subependymal zone is regulated by trophic factors. Reduced levels of trophic factors are associated with inhibitory interneuron dysfunction in the prefrontal cortex and hippocampus in psychiatric disorders, yet the extent to which altered trophic support may underpin deficits in inhibitory interneuron generation in the neurogenic niche remains unexplored in schizophrenia and bipolar disorder. We determined whether the expression of ligands, bioavailability-regulating binding proteins, and cognate receptors of 4 major trophic factor families (insulin-like growth factor [IGF], epidermal growth factor [EGF], fibroblast growth factor [FGF], and brain-derived neurotrophic factor [BDNF]) are changed in schizophrenia and bipolar disorder compared to controls. We used robust linear regression analyses to determine whether altered expression of trophic factor family members predicts neurogenesis marker expression across diagnostic groups. We found that IGF1 mRNA was decreased in schizophrenia and bipolar disorder compared with controls (P ≤ .006), whereas both IGF1 receptor (IGF1R) and IGF binding protein 2 (IGFBP2) mRNAs were reduced in schizophrenia compared with controls (P ≤ .02). EGF, FGF, and BDNF family member expression were all unchanged in both psychiatric disorders compared with controls. IGF1 expression positively predicted neuronal progenitor and immature neuron marker mRNAs (P ≤ .01). IGFBP2 expression positively predicted neural stem cell and neuronal progenitor marker mRNAs (P ≤ .001). These findings provide the first molecular evidence of decreased IGF1, IGF1R, and IGFBP2 mRNA expression in the subependymal zone in psychiatric disorders, which may potentially impact neurogenesis in schizophrenia and bipolar disorder.

Funder

NSW Ministry of Health, Office of Health and Medical Research

National Health and Medical Research Council

Principal Research Fellowship

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3