Derivation and Molecular Characterization of a Morphological Subpopulation of Human iPSC Astrocytes Reveal a Potential Role in Schizophrenia and Clozapine Response

Author:

Akkouh Ibrahim A12ORCID,Hribkova Hana3,Grabiec Marta3,Budinska Eva4,Szabo Attila12,Kasparek Tomas5,Andreassen Ole A16,Sun Yuh-Man3ORCID,Djurovic Srdjan27

Affiliation:

1. NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

2. Department of Medical Genetics, Oslo University Hospital, Oslo, Norway

3. Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic

4. Bioinformatics in Translational Research, RECETOX & IBA, Masaryk University, Brno, Czech Republic

5. Department of Psychiatry, Faculty of Medicine and University Hospital Brno, Brno, Czech Republic

6. Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway

7. NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway

Abstract

Abstract Astrocytes are the most abundant cell type in the human brain and are important regulators of several critical cellular functions, including synaptic transmission. Although astrocytes are known to play a central role in the etiology and pathophysiology of schizophrenia, little is known about their potential involvement in clinical response to the antipsychotic clozapine. Moreover, astrocytes display a remarkable degree of morphological diversity, but the potential contribution of astrocytic subtypes to disease biology and drug response has received little attention. Here, we used state-of-the-art human induced pluripotent stem cell (hiPSC) technology to derive a morphological subtype of astrocytes from healthy individuals and individuals with schizophrenia, including responders and nonresponders to clozapine. Using functional assays and transcriptional profiling, we identified a distinct gene expression signature highly specific to schizophrenia as shown by disease association analysis of more than 10 000 diseases. We further found reduced levels of both glutamate and the NMDA receptor coagonist d-serine in subtype astrocytes derived from schizophrenia patients, and that exposure to clozapine only rescued this deficiency in cells from clozapine responders, providing further evidence that d-serine in particular, and NMDA receptor-mediated glutamatergic neurotransmission in general, could play an important role in disease pathophysiology and clozapine action. Our study represents a first attempt to explore the potential contribution of astrocyte diversity to schizophrenia pathophysiology using a human cellular model. Our findings suggest that specialized subtypes of astrocytes could be important modulators of disease pathophysiology and clinical drug response, and warrant further investigations.

Funder

Czech Health Research Council

South-Eastern Norway Regional Health Authority

Research Council of Norway

European Structural and Investment Funds

Publisher

Oxford University Press (OUP)

Subject

Psychiatry and Mental health

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3