Interspecies variation in DNA damage induced by pollution

Author:

Sebbio Claudia1,Carere Claudio1,Nascetti Giuseppe1,Bellisario Bruno1,Mosesso Pasquale1,Cimmaruta Roberta1,Angeletti Dario1

Affiliation:

1. Department of Ecological and Biological Sciences, Ichthyogenic Experimental Marine Centre (CISMAR), University of Tuscia, Borgo Le Saline, 01016 Tarquinia, VT, Italy

Abstract

Abstract The choice of a suitable species to translate pollution signals into a quantitative monitor is a fundamental step in biomonitoring plans. Here we present the results of three years of biomonitoring at a new coal power plant in central Italy using three different aquatic and terrestrial wildlife species in order to compare their reliability as sentinel organisms for genotoxicity. The comet assay was applied to the common land snail Helix spp., the lagoon fish Aphanius fasciatus, and the green frog Rana esculenta sampled in the area potentially exposed to the impact of the power station. The tissue concentration of some expected pollutants (As, Cd, Ni, Pb, Cr) was analysed in parallel samples collected in the same sampling sites. The three species showed different values in the comet assay (Tail Intensity) and different accumulation profiles of heavy metals. Aphanius fasciatus showed an increasing genotoxic effect over time that paralleled the temporal increase of the heavy metals, especially arsenic, and the highest correlation between heavy metals and DNA damage. Helix spp. showed levels of damage inversely related to the distance from the source of pollution and in partial accordance with the total accumulation of trace elements. On the contrary, Rana esculenta showed a low capability to accumulate metals and had inconsistent results in the comet test. The fish appeared to be the most efficient and sensitive species in detecting chemical pollution. Overall, both the fish and the snail reflected a trend of increasing pollution in the area surrounding the power plant across time and space.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3