A review of ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems

Author:

Mckinney Melissa A.12,Pedro Sara12,Dietz Rune3,Sonne Christian3,Fisk Aaron T.4,Roy Denis12,Jenssen Bjørn M.5,Letcher Robert J.6

Affiliation:

1. Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, USA

2. Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA

3. Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, DK-4000, Denmark

4. Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada

5. Department of Biology, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway

6. Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada

Abstract

Abstract Bioaccumulative and biomagnifying contaminants, such as persistent organic pollutants (POPs) and mercury (Hg), have for decades been recognized as a health concern in arctic marine biota. In recent years, global climate change (GCC) and related loss of arctic sea ice have been observed to be driving substantial change in arctic ecosystems. This review summarizes findings documenting empirical links between GCC-induced ecological changes and alterations in POP and Hg exposures and pathways in arctic marine ecosystems. Most of the studies have reported changes in POP or Hg concentrations in tissue in relation to GCC-induced changes in species trophic interactions. These studies have typically focused on the role of changes in abundance, habitat range or accessibility of prey species, particularly in relation to sea ice changes. Yet, the ecological change that resulted in contaminant trend changes has often been unclear or assumed. Other studies have successfully used chemical tracers, such as stable nitrogen and carbon isotope ratios and fatty acid signatures to link such ecological changes to contaminant level variations or trends. Lower sea ice linked-diet changes/variation were associated with higher contaminant levels in some populations of polar bears, ringed seals, and thick-billed murres, but the influence of changing trophic interactions on POP levels and trends varied widely in both magnitude and direction. We suggest that future research in this new area of GCC-linked ecotoxicology should focus on routine analysis of ancillary ecological metrics with POP and Hg studies, simultaneous consideration of the multiple mechanisms by which GCC and contaminant interactions can occur, and targeted research on changing exposures and toxicological effects in species known to be sensitive to both GCC and contaminants.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3