Impact of bismuth oxide on structural, optical and gamma-ray shielding properties of calcium–sodium–borate glasses

Author:

Byalollikar Devidas G1ORCID,Biradar Shrikant1,Dinkar Ashok1,Sankarappa Talari2,Biradar Jayashree3

Affiliation:

1. Kuvempu University, Shankaraghatta Department of Physics, , Shimoga 577 451, India

2. Gulbarga University Department of Physics, , Kalaburagi 585106, India

3. KLE Society’s SK Arts College and HSK Science Institute, Vidyanagar Department of Physics, , Hubballi 580021, India

Abstract

Abstract In the present study, we have prepared six glass samples of bismuth borate using the melt-quenching method with the composition (70-x)B2O3-10CaO-20Na2O-xBi2O3; x = 0, 3, 6, 9, 12 and 15 mol%. The density of the prepared glasses was determined using Archimedes principle. The X-ray diffraction patterns provide confirmation of the amorphous nature of the prepared samples, whereas the Fourier transform infrared measurements pointed to the existence of structural units like BO3, BO4, BiO3 and BiO6 within the glass network. An assessment of the optical absorption spectra unveiled that with the increase in the bismuth oxide content, there was a decrease observed in both the direct and indirect band gap energies. Specifically, they decreased from 3.40 to 2.79 eV and from 3.10 to 2.46 eV, respectively. The properties related to gamma ray attenuation, including the mass attenuation coefficient (μm), effective atomic number (Zeff), half-value layer (HVL) and mean free path (MFP), were examined for all the glass samples. This investigation was carried out using the Phy-X/PSD software, covering the energy range from 0.511 to 1.332 MeV. Out of all the samples, Bi-15, featuring the highest Bi2O3 content, demonstrated the highest μm, Zeff, the smallest HVL and MFP. These results suggest that the glass with 15 mol% of Bi2O3 offers the most effective gamma radiation shielding performance. Moreover, the glasses examined in this study exhibit superior radiation shielding characteristics compared with specific concrete types, namely, ordinary concrete, Hematite serpentine concrete and barite concrete, as well as commercial glasses such as RS-360 and RS-253.

Funder

Kuvempu University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3