Relating Aerial Deposition of Entomophaga maimaiga Conidia (Zoopagomycota: Entomophthorales) to Mortality of Gypsy Moth (Lepidoptera: Erebidae) Larvae and Nearby Defoliation

Author:

Elkinton Joseph S1,Bittner Tonya D2,Pasquarella Valerie J3,Boettner George H1,Liebhold Andrew M45,Gould Juli R6,Faubert Heather7,Tewksbury Lisa7,Broadley Hannah J1,Havill Nathan P8ORCID,Hajek Ann E2

Affiliation:

1. Department of Environmental Conservation and Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA

2. Department of Entomology, Cornell University, Ithaca, NY

3. Center for Remote Sensing, Boston University, Boston, MA

4. Northern Research Station, USDA Forest Service, Morgantown, WV

5. Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Praha 6 – Suchdol, Czech Republic

6. USDA APHIS PPQ Science and Technology, Buzzards Bay, MA

7. Department of Plant Science and Entomology and URI Cooperative Extension, University of Rhode Island, Kingston, RI

8. Northern Research Station, USDA Forest Service, Hamden, CT

Abstract

AbstractWe collected data on mortality of late-instar gypsy moth, Lymantria dispar (L.), from outbreak populations over 4 wk in June 2017 at 10 sites in the New England region of the United States, along with estimated rainfall at these sites. Deposition of airborne conidia of the fungal pathogen, Entomophaga maimaiga Humber, Shimazu & R.S. Soper, was measured at these same sites as well as at seven other locations in New England. We also quantified the geographical distribution of gypsy moth-caused defoliation in New England in 2017 and 2018 from Landsat imagery. Weekly mortality of gypsy moth larvae caused by E. maimaiga correlated with local deposition of conidia from the previous week, but not with rainfall. Mortality from this pathogen reached a peak during the last 2 wk of gypsy moth larval development and always exceeded that caused by LdNPV, the viral pathogen of gypsy moth that has long been associated with gypsy moth outbreaks, especially prior to 1989. Cotesia melanoscela (Ratzeburg) was by far the most abundant parasitoid recovered and caused an average of 12.6% cumulative parasitism, but varied widely among sites. Deposition of E. maimaiga conidia was highly correlated with percent land area defoliated by gypsy moths within distances of 1 and 2 km but was not significantly correlated with defoliation at distances greater than 2 km. This is the first study to relate deposition of airborne conidia of E. maimaiga to mortality of gypsy moths from that agent.

Funder

USDA Forest Service Slow the Spread Program

OP RDE

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3