Development of vitamin B12 dependency inSaccharomyces cerevisiae

Author:

Lehner Sandra1ORCID,Boles Eckhard1

Affiliation:

1. Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt , Frankfurt am Main 60438 , Germany

Abstract

AbstractFor decades, the industrial vitamin B12 (cobalamin) production has been based on bacterial producer strains. Due to limited methods for strain optimization and difficult strain handling, the desire for new vitamin B12-producing hosts has risen. As a vitamin B12-independent organism with a big toolbox for genomic engineering and easy-to-handle cultivation conditions, Saccharomyces cerevisiae has high potential for heterologous vitamin B12 production. However, the B12 synthesis pathway is long and complex. To be able to easily engineer and evolve B12-producing recombinant yeast cells, we have developed an S. cerevisiae strain whose growth is dependent on vitamin B12. For this, the B12-independent methionine synthase Met6 of yeast was replaced by a B12-dependent methionine synthase MetH from Escherichia coli. Adaptive laboratory evolution, RT-qPCR, and overexpression experiments show that additional high-level expression of a bacterial flavodoxin/ferredoxin-NADP+ reductase (Fpr-FldA) system is essential for in vivo reactivation of MetH activity and growth. Growth of MetH-containing yeast cells on methionine-free media is only possible with the addition of adenosylcobalamin or methylcobalamin. A heterologous vitamin B12 transport system turned out to be not necessary for the uptake of cobalamins. This strain should be a powerful chassis to engineer B12-producing yeast cells.

Funder

Goethe-Universität Frankfurt

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3