Affiliation:
1. Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt , Frankfurt am Main 60438 , Germany
Abstract
AbstractFor decades, the industrial vitamin B12 (cobalamin) production has been based on bacterial producer strains. Due to limited methods for strain optimization and difficult strain handling, the desire for new vitamin B12-producing hosts has risen. As a vitamin B12-independent organism with a big toolbox for genomic engineering and easy-to-handle cultivation conditions, Saccharomyces cerevisiae has high potential for heterologous vitamin B12 production. However, the B12 synthesis pathway is long and complex. To be able to easily engineer and evolve B12-producing recombinant yeast cells, we have developed an S. cerevisiae strain whose growth is dependent on vitamin B12. For this, the B12-independent methionine synthase Met6 of yeast was replaced by a B12-dependent methionine synthase MetH from Escherichia coli. Adaptive laboratory evolution, RT-qPCR, and overexpression experiments show that additional high-level expression of a bacterial flavodoxin/ferredoxin-NADP+ reductase (Fpr-FldA) system is essential for in vivo reactivation of MetH activity and growth. Growth of MetH-containing yeast cells on methionine-free media is only possible with the addition of adenosylcobalamin or methylcobalamin. A heterologous vitamin B12 transport system turned out to be not necessary for the uptake of cobalamins. This strain should be a powerful chassis to engineer B12-producing yeast cells.
Funder
Goethe-Universität Frankfurt
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献