K+-specific importers Trk1 and Trk2 play different roles in Ca2+ homeostasis and signalling in Saccharomyces cerevisiae cells

Author:

Zimmermannova Olga1ORCID,Felcmanova Kristina1,Sacka Lenka1,Colinet Anne-Sophie2,Morsomme Pierre2,Sychrova Hana1

Affiliation:

1. Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 - Krc, 142 20, Czech Republic

2. Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, B 1348, Louvain-la-Neuve, Belgium

Abstract

ABSTRACT The maintenance of K+ and Ca2+ homeostasis is crucial for many cellular functions. Potassium is accumulated in cells at high concentrations, while the cytosolic level of calcium, to ensure its signalling function, is kept at low levels and transiently increases in response to stresses. We examined Ca2+ homeostasis and Ca2+ signalling in Saccharomyces cerevisiae strains lacking plasma-membrane K+ influx (Trk1 and Trk2) or efflux (Tok1, Nha1 and Ena1-5) systems. The lack of K+ exporters slightly increased the cytosolic Ca2+, but did not alter the Ca2+ tolerance or Ca2+-stress response. In contrast, the K+-importers Trk1 and Trk2 play important and distinct roles in the maintenance of Ca2+ homeostasis. The presence of Trk1 was vital mainly for the growth of cells in the presence of high extracellular Ca2+, whilst the lack of Trk2 doubled steady-state intracellular Ca2+ levels. The absence of both K+ importers highly increased the Ca2+ response to osmotic or CaCl2 stresses and altered the balance between Ca2+ flux from external media and intracellular compartments. In addition, we found Trk2 to be important for the tolerance to high KCl and hygromycin B in cells growing on minimal media. All the data describe new interconnections between potassium and calcium homeostasis in S. cerevisiae.

Funder

Czech Science Foundation

Centre National de la Recherche Scientifique

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3