How do engineered Yarrowia lipolytica strains secrete free fatty acids: hints from comparative transcriptomics

Author:

Salvador López José Manuel1ORCID,Vidal Lea2,Adiutama Michelle Patricia1,Van Nieuwerburgh Filip3ORCID,Deforce Dieter3,Nicaud Jean-Marc2,Van Bogaert Inge Noëlle Adrienne1ORCID

Affiliation:

1. Centre for Synthetic Biology, Ghent University ,Coupure Links 653, 9000 Gent, Belgium

2. Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute , Domaine de Vilvert, 78350 Jouy-en-Josas, France

3. Laboratory of Pharmaceutical Biotechnology, Ghent University , Ottergemsesteenweg 460 9000 Gent, Belgium

Abstract

Abstract Yarrowia lipolytica has been considered one of the most promising platforms for the microbial production of fatty acids and derived products. The deletion of the faa1 gene coding for an acyl-CoA synthetase leads to the accumulation and secretion of free fatty acids (FFAs) into the extracellular space. The secretion of products is beneficial for the development of microbial cell factories to avoid intracellular inhibitory effects and reduce downstream processing costs. However, the mechanism behind the secretion of fatty acids is not well known. As a starting point, we compared the transcriptome of this mutant showing FFA secretion to a wildtype-like strain not showing this phenotype. The 12 most upregulated genes were evaluated for involvement in FFA secretion by the creation of deletion and overexpression mutants, among them MCH2, YMOH, three cell wall proteins CWP3, CWP4, and CWP11, M12B, and three proteins with unknown functions YUP1, YUP2, and YUP3. None of these proteins take a clear or isolated role in FFA export. As the transcriptomic data revealed an overrepresentation of cell wall-related proteins, some of them were further examined on a theoretical and experimental way. Surprisingly, overexpression of Ygpi led to the production of FFAs in the wildtype-like genetic background. Finally, some of the evaluated genes showed involvement in resistance to FFA toxicity.

Funder

Research Foundation Flanders

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3