Utilization of ethanol for itaconic acid biosynthesis by engineered Saccharomyces cerevisiae

Author:

Xu Yaying1ORCID,Li Zhimin12

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

2. Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China

Abstract

ABSTRACT In Saccharomyces cerevisiae, ethanol can serve as both a carbon source and NADH donor for the production of acetyl-CoA derivatives. Here we investigated the metabolic regulation of ethanol utilization for itaconic acid production by S. cerevisiae. To understand the interconnection between the TCA cycle and the glyoxylate pathway, mitochondrial membrane transporter proteins SFC1, YHM2, CTP1, DIC1 and MPC1 were knocked out and results showed that SFC1 functions as an important entrance of the glyoxylate pathway into the TCA cycle, and YHM2 is helpful to IA production but not the primary pathway for citric acid supply. To decrease the accumulation of acetic acid, the major ADP/ATP carrier of the mitochondrial inner membrane, AAC2, was upregulated and determined to accelerate ethanol utilization and itaconic acid production. RNA sequencing results showed that AAC2 overexpression enhanced IA titer by upregulating the ethanol-acetyl-CoA pathway and NADH oxidase in the mitochondrial membrane. RNA-seq analysis also suggested that aconitase ACO1 may be a rate-limiting step of IA production. However, the expression of exogenous aconitase didn't increase IA production but enhanced the rate of ethanol utilization and decreased cell growth.

Funder

National Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3