A detailed lipidomic study of human pathogenic fungi Candida auris

Author:

Shahi Garima1,Kumar Mohit12,Kumari Sonam2,Rudramurthy Shivaprakash M3,Chakrabarti Arunaloke3ORCID,Gaur Naseem A2,Singh Ashutosh4,Prasad Rajendra1ORCID

Affiliation:

1. Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurugram,, Haryana, 122413, India

2. Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India

3. Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research,, Chandigarh, 160012, India

4. Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India

Abstract

ABSTRACT The present study is an attempt to determine the lipid composition of Candida auris and to highlight if the changes in lipids can be correlated to high drug resistance encountered in C. auris. For this, the comparative lipidomics landscape between drug-susceptible (CBS10913T) and a resistant hospital isolate (NCCPF_470033) of C. auris was determined by employing high throughput mass spectrometry. All major groups of phosphoglycerides (PGL), sphingolipids, sterols, diacylglycerols (DAG) and triacylglycerols (TAG), were quantitated along with their molecular lipid species. Our analyses highlighted several key changes where the NCCPF_470033 showed an increase in PGL content, specifically phosphatidylcholine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, and phosphatidylethanolamine; odd chain containing lipids and accumulation of 16:1-DAG and 16:0-DAG; depletion of 18:1-TAG and 18:0-TAG. The landscape of molecular species displayed a distinct imprint between isolates. For example, the levels of unsaturated PGLs, contributed by both odd and even-chain fatty acyls were higher in resistant NCCPF_470033 isolate, resulting in a higher unsaturation index. Notwithstanding, several commonalities of lipid compositional changes between resistant C. auris and other Candida spp., the study could also identify distinguishable changes in specific lipid species in C. auris. Together, the data highlights the modulation of membrane lipid homeostasis associated with drug-resistant phenotype of C. auris.

Funder

Indian Council of Medical Research

Department of Science and Technology, Republic of South Africa

Amity University

International Center for Genetic Engineering and Biotechnology

Department of Biotechnology

Government of India for financial support

Kansas Lipidomics Research Center Analytical Laboratory

Kansas State University

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3