Affiliation:
1. Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
2. Allen Discovery Center, Tufts University, 200 Boston Ave Suite 4600, Medford, MA 02155
Abstract
ABSTRACT
The pathogenic yeast Candida glabrata is reliant on a suite of cell surface adhesins that play a variety of roles necessary for transmission, establishment and proliferation during infection. One particular adhesin, Epithelial Adhesin 1 [Epa1p], is responsible for binding to host tissue, a process which is essential for fungal propagation. Epa1p structure consists of three domains: an N-terminal intercellular binding domain responsible for epithelial cell binding, a C-terminal GPI anchor for cell wall linkage and a serine/threonine-rich linker domain connecting these terminal domains. The linker domain contains a 40-amino acid tandem repeat region, which we have found to be variable in repeat copy number between isolates from clinical sources. We hypothesized that natural variation in Epa1p repeat copy may modulate protein function. To test this, we recombinantly expressed Epa1p with various repeat copy numbers in S. cerevisiae to determine how differences in repeat copy number affect Epa1p expression, surface display and binding to human epithelial cells. Our data suggest that repeat copy number variation has pleiotropic effects, influencing gene expression, protein surface display and shedding from the cell surface of the Epa1p adhesin. This study serves to demonstrate repeat copy number variation can modulate protein function through a number of mechanisms in order to contribute to pathogenicity of C. glabrata.
Funder
Army Research Office
American Society for Biochemistry and Molecular Biology
Tufts University Summer Scholars
Justin and Ashleigh Nelson
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献