High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments

Author:

Papini Flávia S1,Seifert Mona1,Dulin David1ORCID

Affiliation:

1. Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058 Erlangen, Germany

Abstract

Abstract Single molecule biophysics experiments have enabled the observation of biomolecules with a great deal of precision in space and time, e.g. nucleic acids mechanical properties and protein–nucleic acids interactions using force and torque spectroscopy techniques. The success of these experiments strongly depends on the capacity of the researcher to design and fabricate complex nucleic acid structures, as the outcome and the yield of the experiment also strongly depend on the high quality and purity of the final construct. Though the molecular biology techniques involved are well known, the fabrication of nucleic acid constructs for single molecule experiments still remains a difficult task. Here, we present new protocols to generate high quality coilable double-stranded DNA and RNA, as well as DNA and RNA hairpins with ∼500–1000 bp long stems. Importantly, we present a new approach based on single-stranded DNA (ssDNA) annealing and we use magnetic tweezers to show that this approach simplifies the fabrication of complex DNA constructs, such as hairpins, and converts more efficiently the input DNA into construct than the standard PCR-digestion-ligation approach. The protocols we describe here enable the design of a large range of nucleic acid construct for single molecule biophysics experiments.

Funder

University of Erlangen-Nuremberg

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3