Specificity in root domain accumulation of Phytoglobin1 and nitric oxide (NO) determines meristematic viability in water-stressed Brassica napus roots

Author:

Mira Mohammed M12,Ibrahim Shimaa12,So Kenny1,Kowatsch Ralph1,Duncan Robert W1,Hill Robert D1,Stasolla Claudio1

Affiliation:

1. Department of Plant Science, University of Manitoba , Winnipeg, Manitoba, R3T 2N2 , Canada

2. Department of Botany, Faculty of Science, Tanta University , Tanta, 31527 , Egypt

Abstract

Abstract Background and Aims Drought reduces plant productivity, especially in the susceptible species Brassica napus. Water stress, mimicked by applications of 10 % polyethylene glycol (PEG), elevates nitric oxide (NO) in root cells after a few hours, contributing to degradation of the root apical meristems (RAMs), the function of which relies on auxin and brassinosteroids (BRs). Phytoglobins (Pgbs) are effective NO scavengers induced by this stress. This study examines the effects of BnPgb1 dysregulation in dehydrating B. napus roots, and the spatiotemporal relationship between Pgb1 and activities of auxin and BRs in the regulation of the RAM. Methods Brassica napus lines over-expressing [BnPgb1(S)] or down-regulating [BnPgb1(RNAi)] BnPgb1 were exposed to PEG-induced water stress. The localization of BnPgb1, NO, auxin and PIN1 were analysed during the first 48 h, while the expression level of biosynthetic auxin and BR genes was measured during the first 24 h. Pharmacological treatments were conducted to assess the requirement of auxin and BR in dehydrating roots. Key Results During PEG stress, BnPgb1 protein accumulated preferentially in the peripheral domains of the root elongation zone, exposing the meristem to NO, which inhibits polar auxin transport (PAT), probably by interfering with PIN1 localization and the synthesis of auxin. Diminished auxin at the root tip depressed the synthesis of BR and caused the degradation of the RAMs. The strength of BnPgb1 signal in the elongation zone was increased in BnPgb1(S) roots, where NO was confined to the most apical cells. Consequently, PAT and auxin synthesis were retained, and the definition of RAMs was maintained. Auxin preservation of the RAM required BRs, although BRs alone was not sufficient to fully rescue drought-damaged RAMs in auxin-depleted environments. Conclusions The tissue-specific localization of BnPgb1 and NO determine B. napus root responses to water stress. A model is proposed in which auxin and BRs act as downstream components of BnPgb1 signalling in the preservation of RAMs in dehydrating roots.

Funder

NSERC

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Reference56 articles.

1. Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function;Ackerman-Lavert;Current Biology,2021

2. Effects of abiotic stresses on Brassica species and role of transgenic breeding for adaptation;Ahmar;Asian Journal of Research in Crop Sciences,2019

3. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis;Bao;Plant Physiology,2004

4. Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies;Batool;Journal of Plant Growth Regulators,2022

5. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits;Bengough;Journal of Experimental Botany,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3