Leaf photosynthesis is positively correlated with xylem and phloem areas in leaf veins in rice (Oryza sativa) plants

Author:

Huang Guanjun1,Shu Yu1,Peng Shaobing1,Li Yong1ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China

Abstract

Abstract Background and Aims Leaf structure is an important determinant of leaf photosynthesis; however, the impacts of leaf structural traits on gas exchange parameters are still not fully understood. In the present study, 11 rice genotypes were grown in pots to investigate the influence of leaf structural traits on leaf photosynthesis and hydraulic conductance (Kleaf). Methods In this study, leaf photosynthetic rate (A), stomatal conductance (gs), mesophyll conductance and Kleaf were measured. In addition, leaf structural traits including leaf thickness (LT), leaf mass per area and leaf xylem and phloem sizes were also measured to investigate their impacts on rice photosynthesis. Key Results We found that the total area of xylem conduits per major vein (Xmajor), leaf phloem area per minor vein (Pminor) and LT were positively correlated with Kleaf, gs and A. The path analysis suggested that, however, only Pminor had a direct impact on A; Xmajor had an indirect impact on A via gs and Pminor, while LT did not show any direct or indirect impact on A. Conclusion This study highlighted the importance of manipulations in Xmajor and Pminor, two previously overlooked leaf traits, to improve leaf photosynthesis in rice plants.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3