Affiliation:
1. National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
Abstract
Abstract
Background and Aims
Leaf structure is an important determinant of leaf photosynthesis; however, the impacts of leaf structural traits on gas exchange parameters are still not fully understood. In the present study, 11 rice genotypes were grown in pots to investigate the influence of leaf structural traits on leaf photosynthesis and hydraulic conductance (Kleaf).
Methods
In this study, leaf photosynthetic rate (A), stomatal conductance (gs), mesophyll conductance and Kleaf were measured. In addition, leaf structural traits including leaf thickness (LT), leaf mass per area and leaf xylem and phloem sizes were also measured to investigate their impacts on rice photosynthesis.
Key Results
We found that the total area of xylem conduits per major vein (Xmajor), leaf phloem area per minor vein (Pminor) and LT were positively correlated with Kleaf, gs and A. The path analysis suggested that, however, only Pminor had a direct impact on A; Xmajor had an indirect impact on A via gs and Pminor, while LT did not show any direct or indirect impact on A.
Conclusion
This study highlighted the importance of manipulations in Xmajor and Pminor, two previously overlooked leaf traits, to improve leaf photosynthesis in rice plants.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Oxford University Press (OUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献