Genotypic variation rather than ploidy level determines functional trait expression in a foundation tree species in the presence and absence of environmental stress

Author:

Eisenring Michael12ORCID,Lindroth Richard L1ORCID,Flansburg Amy3,Giezendanner Noreen1,Mock Karen E4ORCID,Kruger Eric L3ORCID

Affiliation:

1. Department of Entomology, University of Wisconsin-Madison , 1630 Linden Dr., Madison, WI , USA

2. Forest Entomology, Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL , Zürcherstrasse 111, 8903 Birmensdorf , Switzerland

3. Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Dr., Madison, WI USA

4. Department of Wildland Resources and Ecology Center, 5230 Old Main Hill, Utah State University , Logan, UT , USA

Abstract

Abstract Background and Aims At the population level, genetic diversity is a key determinant of a tree species’ capacity to cope with stress. However, little is known about the relative importance of the different components of genetic diversity for tree stress responses. We compared how two sources of genetic diversity, genotype and cytotype (i.e. differences in ploidy levels), influence growth, phytochemical and physiological traits of Populus tremuloides in the presence and absence of environmental stress. Methods In a series of field studies, we first assessed variation in traits across diploid and triploid aspen genotypes from Utah and Wisconsin under non-stressed conditions. In two follow-up experiments, we exposed diploid and triploid aspen genotypes from Wisconsin to individual and interactive drought stress and defoliation treatments and quantified trait variations under stress. Key Results We found that (1) tree growth and associated traits did not differ significantly between ploidy levels under non-stressed conditions. Instead, variation in tree growth and most other traits was driven by genotypic and population differences. (2) Genotypic differences were critical for explaining variation of most functional traits and their responses to stress. (3) Ploidy level played a subtle role in shaping traits and trait stress responses, as its influence was typically obscured by genotypic differences. (4) As an exception to the third conclusion, we showed that triploid trees expressed 17 % higher foliar defence (tremulacin) levels, 11 % higher photosynthesis levels and 23 % higher rubisco activity under well-watered conditions. Moreover, triploid trees displayed greater drought resilience than diploids as they produced 35 % more new tissue than diploids when recovering from drought stress. Conclusion Although ploidy level can strongly influence the ecology of tree species, those effects may be relatively small in contrast to the effects of genotypic variation in highly diverse species.

Funder

Swiss National Science Foundation

USDA National Institute of Food and Agriculture

Utah Agricultural Experiment Station

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3