Forecasting beef production and quality using large-scale integrated data from Brazil

Author:

Aiken Vera Cardoso Ferreira1,Fernandes Arthur Francisco Araújo1ORCID,Passafaro Tiago Luciano1,Acedo Juliano Sabella2,Dias Fábio Guerra3,Dórea João Ricardo Rebouças4,Rosa Guilherme Jordão de Magalhães15

Affiliation:

1. Department of Animal Sciences, University of Wisconsin–Madison, Madison, WI

2. DSM Produtos Nutricionais Brasil S.A., São Paulo, Brazil

3. JBS S.A., São Paulo, Brazil

4. Department of Dairy Science, University of Wisconsin–Madison, Madison, WI

5. Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI

Abstract

Abstract With agriculture rapidly becoming a data-driven field, it is imperative to extract useful information from large data collections to optimize the production systems. We compared the efficacy of regression (linear regression or generalized linear regression [GLR] for continuous or categorical outcomes, respectively), random forests (RF) and multilayer neural networks (NN) to predict beef carcass weight (CW), age when finished (AS), fat deposition (FD), and carcass quality (CQ). The data analyzed contained information on over 4 million beef cattle from 5,204 farms, corresponding to 4.3% of Brazil’s national production between 2014 and 2016. Explanatory variables were integrated from different data sources and encompassed animal traits, participation in a technical advising program, nutritional products sold to farms, economic variables related to beef production, month when finished, soil fertility, and climate in the location in which animals were raised. The training set was composed of information collected in 2014 and 2015, while the testing set had information recorded in 2016. After parameter tuning for each algorithm, models were used to predict the testing set. The best model to predict CW and AS was RF (CW: predicted root mean square error = 0.65, R2 = 0.61, and mean absolute error = 0.49; AS: accuracy = 28.7%, Cohen’s kappa coefficient [Kappa] = 0.08). While the best approach for FD and CQ was GLR (accuracy = 45.7%, Kappa = 0.05, and accuracy = 58.7%, Kappa = 0.09, respectively). Across all models, there was a tendency for better performance with RF and regression and worse with NN. Animal category, nutritional plan, cattle sales price, participation in a technical advising program, and climate and soil in which animals were raised were deemed important for prediction of meat production and quality with regression and RF. The development of strategies for prediction of livestock production using real-world large-scale data will be core to projecting future trends and optimizing the allocation of resources at all levels of the production chain, rendering animal production more sustainable. Despite beef cattle production being a complex system, this analysis shows that by integrating different sources of data it is possible to forecast meat production and quality at the national level with moderate-high levels of accuracy.

Funder

UW–Madison

Advanced Computing Initiative

Wisconsin Alumni Research Foundation

Wisconsin Institutes for Discovery

National Science Foundation

U.S. Department of Energy’s Office of Science

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3