The relationship between the rumen microbiome and carcass merit in Angus steers

Author:

Krause Taylor R1,Lourenco Jeferson M1ORCID,Welch Christina B1,Rothrock Michael J2,Callaway Todd R1ORCID,Pringle T Dean1

Affiliation:

1. Department of Animal and Dairy Science, University of Georgia, Athens, GA

2. Egg Safety and Quality Research Unit, Richard B. Russell Research Center, Agricultural Research Service, USDA, Athens, GA

Abstract

Abstract The objective of this study was to explore the relationships between ruminal microbial populations from Angus steers that were divergent in carcass traits related to adipose accumulation. Twenty-four feedlot-finished Angus steers (age: 538 ± 21 d; body weight following lairage: 593.9 ± 43.7 kg) were slaughtered, and ruminal contents and carcass data were collected. Ruminal microbial deoxyribonucleic acid (DNA) extraction and 16S ribosomal ribonucleic acid (rRNA) gene sequencing were performed to determine microbial relative abundances, to estimate microbial diversity, and to predict microbial metabolic pathways. A variety of correlation analyses and one-way ANOVA were performed to investigate the relationships between the rumen microbiome and carcass traits. Marbling score (P = 0.001) and longissimus lipid content (P = 0.009) were positively correlated to Chao1 Richness Index, suggesting that increased intramuscular fat was associated with increased numbers of ruminal microbial species. The phyla Tenericutes and TM7 were negatively correlated (P ≤ 0.05) to marbling score and longissimus lipid content, indicating that lower abundances of these phyla may be associated with improvements in intramuscular fat content. Greater abundance of the bacterial family S24-7 was positively correlated (P = 0.002) to marbling score. Analysis by marbling classification revealed further linkages to microbial richness (P ≤ 0.063), diversity (P = 0.044), and S24-7 (P < 0.001) populations. Computational prediction of the microbial metabolic pathways revealed no differences (P ≥ 0.05) in metabolic pathway expression in rumen microbes between steers in the high- and low-marbling classes. Several phyla, families, and genera were positively correlated (P ≤ 0.05) to both rib fat thickness and yield grade. Collectively, our results suggest that microbial composition is associated to differing performance in carcass adipose traits. Overall, most of the bacterial taxa correlated to the intramuscular and subcutaneous fat depots did not overlap, suggesting the microbial population end products likely impacted adipose accumulation largely via separate adipogenic pathways of the host animal.

Funder

Brasstown Beef, LLC

Georgia Agricultural Commodity Commission for Beef

Angus Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3