Breed- and trait-specific associations define the genetic architecture of calving performance traits in cattle

Author:

Purfield Deirdre C12,Evans Ross D2,Berry Donagh P3

Affiliation:

1. Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Co. Cork, Ireland

2. Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland

3. Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

Abstract

Abstract Reducing the incidence of both the degree of assistance required at calving, as well as the extent of perinatal mortality (PM) has both economic and societal benefits. The existence of heritable genetic variability in both traits signifies the presence of underlying genomic variability. The objective of the present study was to locate regions of the genome, and by extension putative genes and mutations, that are likely to be underpinning the genetic variability in direct calving difficulty (DCD), maternal calving difficulty (MCD), and PM. Imputed whole-genome single-nucleotide polymorphism (SNP) data on up to 8,304 Angus (AA), 17,175 Charolais (CH), 16,794 Limousin (LM), and 18,474 Holstein-Friesian (HF) sires representing 5,866,712 calving events from descendants were used. Several putative quantitative trait loci (QTL) regions associated with calving performance both within and across dairy and beef breeds were identified, although the majority were both breed- and trait-specific. QTL surrounding and encompassing the myostatin (MSTN) gene were associated (P < 5 × 10−8) with DCD and PM in both the CH and LM populations. The well-known Q204X mutation was the fifth strongest association with DCD in the CH population and accounted for 5.09% of the genetic variance in DCD. In contrast, none of the 259 segregating variants in MSTN were associated (P > × 10−6) with DCD in the LM population but a genomic region 617 kb downstream of MSTN was associated (P < 5 × 10−8). The genetic architecture for DCD differed in the HF population relative to the CH and LM, where two QTL encompassing ZNF613 on Bos taurus autosome (BTA)18 and PLAG1 on BTA14 were identified in the former. Pleiotropic SNP associated with all three calving performance traits were also identified in the three beef breeds; 5 SNP were pleiotropic in AA, 116 in LM, and 882 in CH but no SNP was associated with more than one trait within the HF population. The majority of these pleiotropic SNP were on BTA2 surrounding MSTN and were associated with both DCD and PM. Multiple previously reported, but also novel QTL, associated with calving performance were detected in this large study. These also included QTL regions harboring SNP with the same direction of allele substitution effect for both DCD and MCD thus contributing to a more effective simultaneous selection for both traits.

Funder

European Union’s Horizon 2020

Science Foundation Ireland

Research Centers

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3