Indirect predictions with a large number of genotyped animals using the algorithm for proven and young

Author:

Garcia Andre L S1ORCID,Masuda Yutaka1ORCID,Tsuruta Shogo1ORCID,Miller Stephen2,Misztal Ignacy1ORCID,Lourenco Daniela1ORCID

Affiliation:

1. Department of Animal and Dairy Science, University of Georgia, Athens, GA

2. Angus Genetics Inc. St. Joseph, MO

Abstract

Abstract Reliable single-nucleotide polymorphisms (SNP) effects from genomic best linear unbiased prediction BLUP (GBLUP) and single-step GBLUP (ssGBLUP) are needed to calculate indirect predictions (IP) for young genotyped animals and animals not included in official evaluations. Obtaining reliable SNP effects and IP requires a minimum number of animals and when a large number of genotyped animals are available, the algorithm for proven and young (APY) may be needed. Thus, the objectives of this study were to evaluate IP with an increasingly larger number of genotyped animals and to determine the minimum number of animals needed to compute reliable SNP effects and IP. Genotypes and phenotypes for birth weight, weaning weight, and postweaning gain were provided by the American Angus Association. The number of animals with phenotypes was more than 3.8 million. Genotyped animals were assigned to three cumulative year-classes: born until 2013 (N = 114,937), born until 2014 (N = 183,847), and born until 2015 (N = 280,506). A three-trait model was fitted using the APY algorithm with 19,021 core animals under two scenarios: 1) core 2013 (random sample of animals born until 2013) used for all year-classes and 2) core 2014 (random sample of animals born until 2014) used for year-class 2014 and core 2015 (random sample of animals born until 2015) used for year-class 2015. GBLUP used phenotypes from genotyped animals only, whereas ssGBLUP used all available phenotypes. SNP effects were predicted using genomic estimated breeding values (GEBV) from either all genotyped animals or only core animals. The correlations between GEBV from GBLUP and IP obtained using SNP effects from core 2013 were ≥0.99 for animals born in 2013 but as low as 0.07 for animals born in 2014 and 2015. Conversely, the correlations between GEBV from ssGBLUP and IP were ≥0.99 for animals born in all years. IP predictive abilities computed with GEBV from ssGBLUP and SNP predictions based on only core animals were as high as those based on all genotyped animals. The correlations between GEBV and IP from ssGBLUP were ≥0.76, ≥0.90, and ≥0.98 when SNP effects were computed using 2k, 5k, and 15k core animals. Suitable IP based on GEBV from GBLUP can be obtained when SNP predictions are based on an appropriate number of core animals, but a considerable decline in IP accuracy can occur in subsequent years. Conversely, IP from ssGBLUP based on large numbers of phenotypes from non-genotyped animals have persistent accuracy over time.

Funder

Angus Genetics Inc

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3