Temperature, phosphorus and species composition will all influence phytoplankton production and content of polyunsaturated fatty acids

Author:

Calderini Marco L1ORCID,Pääkkönen Salli2,Salmi Pauliina2ORCID,Peltomaa Elina3ORCID,Taipale Sami J1ORCID

Affiliation:

1. University of Jyväskylä Department of Biological and Environmental Science, , P.O. Box 35 FI-40014, Jyväskylä, Finland

2. University of Jyväskylä Spectral Imaging Laboratory, Faculty of Information Technology, , P.O. BOX 35 FI-40014, Jyväskylä Finland

3. University of Helsinki Department of Forest Sciences, , P.O. Box 27 FI-00014, Helsinki, Finland

Abstract

Abstract Temperature increases driven by climate change are expected to decrease the availability of polyunsaturated fatty acids in lakes worldwide. Nevertheless, a comprehensive understanding of the joint effects of lake trophic status, nutrient dynamics and warming on the availability of these biomolecules is lacking. Here, we conducted a laboratory experiment to study how warming (18–23°C) interacts with phosphorus (0.65–2.58 μM) to affect phytoplankton growth and their production of polyunsaturated fatty acids. We included 10 species belonging to the groups diatoms, golden algae, cyanobacteria, green algae, cryptophytes and dinoflagellates. Our results show that both temperature and phosphorus will boost phytoplankton growth, especially stimulating certain cyanobacteria species (Microcystis sp.). Temperature and phosphorus had opposing effects on polyunsaturated fatty acid proportion, but responses are largely dependent on species. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) synthesizing species did not clearly support the idea that warming decreases the production or content of these essential polyunsaturated fatty acids. Our results suggest that warming may have different effects on the polyunsaturated fatty acid availability in lakes with different nutrient levels, and that different species within the same phytoplankton group can have contrasting responses to warming. Therefore, we conclude that future production of EPA and DHA is mainly determined by species composition.

Funder

Academy of Finland

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3