Application of nuclear magnetic resonance for analyzing metabolic characteristics of winter diatom blooms

Author:

Jeong Kwang-Seuk1,Jeong Keon-Young12,Hong Young-ShiCk3,Kim Dong-Kyun4,Oh Hye-Ji5,Chang Kwang-Hyeon5

Affiliation:

1. Department of Nursing Science, School of Public Health, Dongju College, Busan, South Korea

2. Department of Biological Sciences, Pusan National University, Busan, South Korea

3. Division of Food and Nutrition, Chonnam National University, Gwangju, South Korea

4. K-WATER RESEARCH INSTITUTE, DAEJEON, SOUTH Korea

5. Department of Environmental Science and Environmental Engineering, Kyung Hee University, Yongin, South Korea

Abstract

Abstract We compared two metabolome profiles of a small centric diatom species, Stephanodiscus hantzschii Grun., grown under conditions with enriched nutrients but different temperatures. This species proliferates in eutrophic rivers during winter. We investigated the population dynamics and internal metabolite changes of Stephanodiscus by performing a simple culture experiment at different temperatures (5 and 15°C). We applied the 1H nuclear magnetic resonance (NMR) technique to fully grown cells to obtain the metabolite profiles of S. hantzschii. Growth rates were significantly different at different temperature conditions (0.99 ± 0.11 day−1 at 15°C and 0.21 ± 0.12 day−1 at 5°C, n = 10). Characterized metabolites included saturated and unsaturated fatty acids, AXP (including AMP, ADP and ATP), and UDP-glucose and UDP-galactose, all of which are important for energy metabolism. These metabolites were abundant within S. hantzschii cells grown at 15°C but were not prolific in those grown at 5°C. Furthermore, other 1H NMR spectrum uncovered very little amounts of metabolites. Based on these observations of cell growth rate, although required nutrients were supplied, colder temperatures suppressed population growth through the deactivation of various internal metabolisms. Thus, winter proliferation of this species is opportunistic, implying that survival success led to dominance in freshwater ecosystems with neither resource competition nor grazing pressure.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3