Evidence for adaptive strategies in larval capelin on the northeastern coast of Newfoundland, Canada

Author:

Tripp Ashley12ORCID,Murphy Hannah M1234,Davoren Gail K12

Affiliation:

1. Biological Sciences Department , , 212B Biological Sciences Building, Winnipeg, MB, R3T 2N2 , Canada

2. University of Manitoba , , 212B Biological Sciences Building, Winnipeg, MB, R3T 2N2 , Canada

3. Northwest Atlantic Fisheries Centre , , 80 East White Hills Road, St. John’s, NL, A1C 5X1 , Canada

4. Fisheries and Oceans Canada , , 80 East White Hills Road, St. John’s, NL, A1C 5X1 , Canada

Abstract

Abstract Fish species with high mortality during early life may maximize fitness using adaptive strategies to time hatching to match favorable environmental conditions (match/mismatch) or extending spawning/hatching to disperse risk (bet-hedging). We examined support for these strategies in a collapsed forage fish, capelin (Mallotus villosus), in coastal Newfoundland (2018–2021). Capelin shift from spawning at warm, intertidal to cool, subtidal (15–40 m) habitats in warmer years, with unknown recruitment consequences. We hypothesized that match/mismatch (specifically, Coastal Water Mass Replacement Hypothesis) would be supported if densities of recently hatched larvae showed pulses that overlapped with high prey and low predator densities. Generalized additive models revealed that larval densities increased with zooplankton prey biomass, but were not influenced by predator biomass or temperature, contrasting with pre-collapse studies and providing equivocal support for match/mismatch. Protracted larval emergence and previously documented high variability in larval traits supported a bet-hedging strategy. Larval condition (i.e. length, yolk-sac diameter) did not differ between habitats but varied among years, where the highest proportion of larvae in poor condition was from the intertidal site in the warmest year (2018). Findings suggest that spawning habitat shifts may have limited impact on stock recovery relative to year-specific environmental conditions that influence larval condition.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Manitoba Faculty of Science Fieldwork Support Program

Coastal Restoration Fund

World Wildlife Fund-Canada and Fisheries and Oceans Canada

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3