Diverse taxa of zooplankton inhabit hypoxic waters during both day and night in a temperate eutrophic lake

Author:

Nolan Sean1,Bollens Stephen M12,Rollwagen-Bollens Gretchen12

Affiliation:

1. School of the Environment, Washington State University, 14204 NE Salmon Creek Ave, VSCI 230 Vancouver, WA, USA

2. School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, VSCI 230 Vancouver, WA, USA

Abstract

Abstract As the frequency and intensity of hypoxic events increase in both fresh and marine waters, understanding the ecological effects of hypoxia becomes more important. The extant literature reports varying effects of hypolimnetic hypoxia on the vertical distribution and diel vertical migration (DVM) of zooplankton, with some but not all taxa reported to avoid hypoxic waters. We studied the vertical distribution and DVM of diverse zooplankton taxa throughout three seasons over 2 years (2014 and 2015) in Lacamas Lake, WA, USA. We observed hypoxia (<2 mg L−1 dissolved oxygen) in the hypolimnion of Lacamas Lake during five of six sampling periods, with zooplankton populations often exhibiting ‘h-metric’ values (defined as the proportion of a zooplankton population residing within hypoxic waters) ranged from 0.14 to 1.00, with an overall mean of h = 0.66. Moreover, we observed a lack of DVM in most zooplankton taxa on most occasions. Our findings indicate both community-level and taxon-specific zooplankton tolerances to hypoxia, although the exact mechanisms at play remain to be fully elucidated. Nevertheless, the common residency in hypoxic waters and the lack of DVM by diverse zooplankton taxa that we observed likely have implications for food web dynamics in Lacamas Lake and other water bodies.

Funder

Murdock Charitable Trust’s Partners in Science

National Science Foundation’s Research Experience for Undergraduates

Washington State University

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3