Examining the performance of three ballast water compliance monitoring devices for quantifying live organisms in both regulated size classes (≥50 μm and ≥10–<50 μm)

Author:

Casas-Monroy Oscar1,Brydges Torben2,Kydd Jocelyn1,Ogilvie Dawson1,Rozon Robin M1,Bailey Sarah A1

Affiliation:

1. FISHERIES AND OCEANS CANADA GREAT LAKES LABORATORY FOR FISHERIES AND AQUATIC SCIENCES, , 867 LAKESHORE ROAD, ON L7S 1A1, Canada

2. FISHERIES AND OCEANS CANADA ST. ANDREWS BIOLOGICAL STATION, , 125 MARINE SCIENCE DR, ST. ANDREWS, NB E5B 0E4, Canada

Abstract

Abstract A number of ballast water compliance monitoring devices (CMDs) have been made commercially available to verify the efficacy of ballast water management systems by quantifying the living organisms for both plankton size classes (≥50 μm and ≥10–<50 μm). This study aimed to examine whether new CMDs can provide a reliable indication of compliance regarding Regulation D-2 and to evaluate their performance for indicative analysis of organisms by assessing their accuracy (comparison to microscopy) and precision (comparison within measurement). Challenge fresh water samples were collected in four locations of Lake Ontario, Canada, whereas marine challenge water samples were collected around the Bay of Fundy, New Brunswick, Canada. Ballast water samples were collected from ships visiting several ports across Canada. Overall, accuracy was higher (>80%) in estimating organisms from prepared-challenge water (Ballast Eye and BallastWISE) than from ballast water samples (>70%) (B-QUA only). The sensitivity ranged from 50 to 100% for the ≥50 μm organism size class, whereas for the ≥10–<50 μm organism size class, it was higher for freshwater samples (>75%) than for marine samples (>50%). The performance of CMDs should be assessed under real-world conditions for a better understanding and to improve their use.

Funder

Transport Canada and Fisheries and Oceans Canada

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3