Temperature-dependent egg production and egg hatching rates of small egg-carrying and broadcast-spawning copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus

Author:

Barth-Jensen Coralie1ORCID,Koski Marja2,Varpe Øystein34ORCID,Glad Peter1,Wangensteen Owen S1ORCID,Præbel Kim1,Svensen Camilla1ORCID

Affiliation:

1. FACULTY OF BIOSCIENCES, FISHERIES AND ECONOMICS, UIT THE ARCTIC UNIVERSITY OF NORWAY, TROMSø, NORWAY

2. NATIONAL INSTITUTE FOR AQUATIC RESOURCES, TECHNICAL UNIVERSITY OF DENMARK, LYNGBY, DENMARK

3. NORWEGIAN INSTITUTE FOR NATURE RESEARCH, BERGEN, NORWAY

4. DEPARTMENT OF BIOLOGICAL SCIENCES, UNIVERSITY OF BERGEN, BERGEN, NORWAY

Abstract

Abstract Reproductive rates of copepods are temperature-dependent, but poorly known for small copepods at low temperatures, hindering the predictions of population dynamics and secondary production in high-latitude ecosystems. We investigated egg hatching rates, hatching success and egg production of the small copepods Oithona similis and Microsetella norvegica (sac spawners) and Microcalanus pusillus (broadcast spawner) between March and August. Incubations were performed at ecologically relevant temperatures between 1.3 and 13.2°C, and egg production rates were calculated. All egg hatching rates were positively correlated to temperature, although with large species-specific differences. At the lowest temperatures, M. pusillus eggs hatched within 4 days, whereas the eggs from sac spawners took 3–8 weeks to hatch. The egg hatching success was ≤25% for M. pusillus, >75% for O. similis and variable for M. norvegica. The maximum weight-specific egg production rate (μg C μg−1 C d−1) of M. pusillus was higher (0.22) than O. similis (0.12) and M. norvegica (0.06). M. norvegica reproduction peaked at 6–8°C, the prevailing in situ temperatures during its reproductive period. The difference in reproductive rates indicates species-specific thermal plasticity for the three copepods, which could have implications for present and future population dynamics of the species in arctic fjords.

Funder

Arctic University of Norway

Climate Change in Fjord and Coast

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3