Affiliation:
1. DEPARTAMENTO DE ECOLOXíA E BIOLOXíA ANIMAL, UNIVERSIDADE DE VIGO, Vigo, Spain
2. INSTITUTO ESPAñOL DE OCEANOGRAFíA, A CORUñA, Spain
Abstract
AbstractThe 15N2-tracer assay [Montoya et al. (1996) A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl. Environ. Microbiol., 62, 986–993.] is the most used method for measuring biological N2 fixation in terrestrial and aquatic environments. The reliability of this technique depends on the purity of the commercial 15N2 gas stocks used. However, Dabundo et al. [(2014) PLoS One, 9, e110335.] reported the contamination of some of these stocks with labile 15N-labeled compounds (ammonium, nitrate and/or nitrite). The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and 142 ammonium and consequences for nitrogen fixation measurements. Considering that the tracer assay relies on the conversion of isotopically labeled 15N2 into organic nitrogen, this contamination may have led to overestimated N2 fixation rates. We conducted laboratory and field experiments in order to (i) test the susceptibility of 15N contaminants to assimilation by non-diazotroph organisms and (ii) determine the potential overestimation of the N2 fixation rates estimated in the field. Our findings indicate that the contaminant 15N-compounds are assimilated by non-diazotrophs organisms, leading to an overestimation of N2 fixation rates in the field up to 16-fold under hydrographic conditions of winter mixing.
Funder
Galician Government
Instituto Español de Oceanografía
Formación de Profesorado Universitario
Publisher
Oxford University Press (OUP)
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献