How to reach optimal estimates of confidence intervals in microscopic counting of phytoplankton?

Author:

Salonen Kalevi1ORCID,Salmi Pauliina2ORCID,Keskitalo Jorma1

Affiliation:

1. Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland

2. Faculty of Information Technology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland

Abstract

Abstract Present practices in the microscopic counting of phytoplankton to estimate the reliability of results rely on the assumption of a random distribution of taxa in sample preparations. In contrast to that and in agreement with the literature, we show that aggregated distribution is common and can lead to over-optimistic confidence intervals, if estimated according to the shortcut procedure of Lund et al. based on the number of counted cells. We found a good linear correlation between the distribution independent confidence intervals for medians and those for parametric statistics so that 95% confidence intervals can be approximated by using a correction factor of 1.4. Instead, the recommendation to estimate confidence intervals from the total number of counted cells according to Lund et al. should be categorically rejected. We further propose the adoption of real-time confidence intervals during microscopic counting as the criterion to define how long counting should be continued. Then each sample can be counted in its individual way to reach the necessary reliability independent of highly different samples. Such a dynamic counting strategy would be the most significant development in the quality control of phytoplankton counting since the early pioneers established the present counting practices in the late 1950s.

Funder

Lake Vesijärvi Foundation

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3