Decrease in diatom dominance at lower Si:N ratios alters plankton food webs

Author:

Makareviciute-Fichtner Kriste1ORCID,Matthiessen Birte1,Lotze Heike K2,Sommer Ulrich1

Affiliation:

1. MARINE ECOLOGY, GEOMAR HELMHOLTZ CENTER FOR OCEAN RESEARCH, Duesternbrooker Weg 20 D-24105, KIEL, GERMANY

2. DEPARTMENT OF BIOLOGY, DALHOUSIE UNIVERSITY, 1355 Oxford Street PO BOX 15000 Halifax, Nova Scotia, B3H 4R2, CANADA

Abstract

Abstract Many coastal oceans experience not only increased loads of nutrients but also changes in the stoichiometry of nutrient supply. Excess supply of nitrogen and stable or decreased supply of silicon lower silicon to nitrogen (Si:N) ratios, which may decrease diatom proportion in phytoplankton. To examine how Si:N ratios affect plankton community composition and food web structure, we performed a mesocosm experiment where we manipulated Si:N ratios and copepod abundance in a Baltic Sea plankton community. In high Si:N treatments, diatoms dominated. Some of them were likely spared from grazing unexpectedly resulting in higher diatom biomass under high copepod grazing. With declining Si:N ratios, dinoflagellates became more abundant under low and picoplankton under high copepod grazing. This altered plankton food web structure: under high Si:N ratios, edible diatoms were directly accessible food for copepods, while under low Si:N ratios, microzooplankton and phago-mixotrophs (mixoplankton) were a more important food source for mesograzers. The response of copepods to changes in the phytoplankton community was complex and copepod density-dependent. We suggest that declining Si:N ratios favor microzoo- and mixoplankton leading to increased complexity of planktonic food webs. Consequences on higher trophic levels will, however, likely be moderated by edibility, nutritional value or toxicity of dominant phytoplankton species.

Funder

Helmholtz Research School on Ocean System Science and Technology

GEOMAR Helmholtz Centre for Ocean Research Kiel

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3