Does increased springtime solar radiation also increase primary production?

Author:

Shinohara Ryuichiro1ORCID,Matsuzaki Shin-Ichiro S1ORCID,Nakagawa Megumi1,Tsuchiya Kenji1ORCID,Kohzu Ayato1ORCID

Affiliation:

1. NATIONAL INSTITUTE FOR ENVIRONMENTAL STUDIES , 16-2 ONOGAWA, TSUKUBA, IBARAKI 305-8506 , Japan

Abstract

AbstractWe tested the hypothesis that long-term brightening of solar radiation and changes in the underwater light climate would increase the primary production of phytoplankton in the springtime in Lake Kasumigaura, Japan. Global solar radiation fluctuates on a decadal scale, and the solar radiation in May has been increasing since the 1990s in Japan. We developed a model of depth-integrated primary production (gC m−2 h−1) based on long-term monitoring data. The model based on photosynthesis-irradiance curve clarified that primary production increased by 13.2%, from 0.093 gC m−2 h−1 in 1992 to 0.105 gC m−2 h−1 in 2019, because of the combined effects of solar radiation and water temperature increases. Sensitivity analysis of the model showed that primary production was most sensitive to water quality parameters, i.e. the light attenuation coefficient and nutrient effects on Pmax. Nutrient effects were significantly correlated with the particulate organic carbon to nitrogen ratio, indicating that nitrogen shortage in phytoplankton cells may affect primary production. These results suggest that long-term springtime increases in solar radiation and water temperature increase primary production, but that water quality also controls primary production.

Funder

Water Environment Research Foundation

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3