Changes in astaxanthin and fatty acid concentrations during the developmental process in the calanoid Arctodiaptomus walterianus in an alpine lake at low latitudes

Author:

Cui Suzhen12ORCID,Li Yun1,Liu Le12,Wang Qianhong12,Chen Feizhou12

Affiliation:

1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Astaxanthin is ubiquitous in calanoid copepods in high latitude or altitude regions and is well studied. However, the dynamics of astaxanthin in calanoids at low latitudes are less studied. We collected samples during the ice-free season from Lake Mubanghai, an alpine lake located in a low-latitude and high-altitude region, and analyzed astaxanthin content changes among different developmental stages in Arctodiaptomus walterianus. The total astaxanthin content in A. walterianus varied from 1.66 to 4.49 μg/mg dry weight and was highest in October, the month with the lowest temperature among the three sampling dates. Both free astaxanthin and astaxanthin esters content per biomass and the ratio of free astaxanthin increased from the nauplius to adult stage, and astaxanthin esters dominated in total astaxanthin in all developmental stages. The concentrations of polyunsaturated fatty acids were low in seston but were the main fatty acids in the calanoid. The total fatty acid concentration was positively correlated with the concentrations of total astaxanthin, free astaxanthin and astaxanthin esters in the calanoid. These results suggested that astaxanthin may be beneficial to the accumulation of fatty acids. This strategy may benefit calanoids in adaptation to high mountain environments at low latitudes.

Funder

Nanjing Institute of Geography and Limnology

Plateau Institute

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3