Bayesian inversion for finite fault earthquake source models I—theory and algorithm

Author:

Minson S. E.1,Simons M.1,Beck J. L.1

Affiliation:

1. California Institute of Technology, Pasadena, CA 91125, USA. E-mail: minson@gps.caltech.edu

Abstract

Abstract The estimation of finite fault earthquake source models is an inherently underdetermined problem: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are limited to observations at the Earth's surface. Bayesian methods allow us to determine the set of all plausible source model parameters that are consistent with the observations, our a priori assumptions about the physics of the earthquake source and wave propagation, and models for the observation errors and the errors due to the limitations in our forward model. Because our inversion approach does not require inverting any matrices other than covariance matrices, we can restrict our ensemble of solutions to only those models that are physically defensible while avoiding the need to restrict our class of models based on considerations of numerical invertibility. We only use prior information that is consistent with the physics of the problem rather than some artefice (such as smoothing) needed to produce a unique optimal model estimate. Bayesian inference can also be used to estimate model-dependent and internally consistent effective errors due to shortcomings in the forward model or data interpretation, such as poor Green's functions or extraneous signals recorded by our instruments. Until recently, Bayesian techniques have been of limited utility for earthquake source inversions because they are computationally intractable for problems with as many free parameters as typically used in kinematic finite fault models. Our algorithm, called cascading adaptive transitional metropolis in parallel (CATMIP), allows sampling of high-dimensional problems in a parallel computing framework. CATMIP combines the Metropolis algorithm with elements of simulated annealing and genetic algorithms to dynamically optimize the algorithm's efficiency as it runs. The algorithm is a generic Bayesian Markov Chain Monte Carlo sampler; it works independently of the model design, a priori constraints and data under consideration, and so can be used for a wide variety of scientific problems. We compare CATMIP's efficiency relative to several existing sampling algorithms and then present synthetic performance tests of finite fault earthquake rupture models computed using CATMIP.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference43 articles.

1. The 1989 Loma Prieta earthquake imaged from inversion of geodetic data;Arnadottir;J. geophys. Res.,1994

2. An essay towards solving a problem in the doctrine of chances;Bayes;Phil. Trans. R. Soc.,1763

3. Bayesian system identification based on probability logic;Beck;Struct. Contrl. Health Monit.,2010

4. Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation;Beck;J. Eng. Mech.,2002

5. Updating models and their uncertainties. Part I: Bayesian statistical framework;Beck;J. Eng. Mech.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3